Équations et inéquations du second degré
Équations et inéquations du second degré
I- Équations et polynômes du second degré
1. Généralités
Définition 1:
On appelle équation du second degré à coefficients réels toute équation de la forme ax2+bx+c=0 où a, b et c sont des réels avec a≠0.
Exemples : On appelle équation du second degré à coefficients réels toute équation de la forme ax2+bx+c=0 où a, b et c sont des réels avec a≠0.
• 2x2+3x−5=0 est une équation du second degré où a=2, b=3 et c=−5.
• x2−5x+2=0 est une équation du second degré où a=1, b=−5 et c=2.
• 4x2−7=0 est une équation du second degré où a=4, b=0 et c=−7.
• −3x2+2x=0 est une équation du second degré où a=−3, b=2 et c=0.
• 7x+5=0 n’est pas une équation du second degré.
• 7x3+4x2+5x−6=0 n’est pas une équation du second degré.
Définition 2 ::
On appelle polynôme du second degré ou trinôme du second degré tout polynôme de la forme ax2+bx+c où a, b et c sont des réels avec a≠0.
On appelle polynôme du second degré ou trinôme du second degré tout polynôme de la forme ax2+bx+c où a, b et c sont des réels avec a≠0.
Définition 3 :
On dit qu’un réel α est une racine d’une polynôme du second degré P défini par P(x)=ax2+bx+c si P(α)=0.
Exemple : On dit qu’un réel α est une racine d’une polynôme du second degré P défini par P(x)=ax2+bx+c si P(α)=0.
4 est une racine du polynôme du second degré P défini par P(x)=2x2−11x+12.
En effet :
P(4)=2×42−11×4+12=2×16−44+12=32−32=0
Remarque :
D’une manière générale, on dit qu’un réel α est une racine d’un polynôme P si P(α)=0.
Définition 4 :
On considère une polynôme du second degré P défini par P(x)=ax2+bx+c.
On appelle discriminant de ce polynôme le nombre Δ=b2−4ac.
Exemples : On considère une polynôme du second degré P défini par P(x)=ax2+bx+c.
On appelle discriminant de ce polynôme le nombre Δ=b2−4ac.
• On considère le polynôme P(x)=4x2−5x+2.
On a=4, b=−5 et c=2.
Le discriminant est alors :
Δ=b2−4ac=(−5)2−4×4×2=25−32=−7
• On considère le polynôme P(x)=3x2+4x−1.
On a=3, b=4 et c=−1.
Le discriminant est alors :
Δ=b2−4ac=42−4×3×(−1)=16+12=28
Remarque :
Parfois, les termes du polynôme du second degré ne sont pas rangés dans le sens des puissances de x décroissantes.
Il faut donc bien faire attention à l’ordre des termes du polynôme.
Propriété 1 :
On considère un polynôme du second degré P défini, pour tout réel x par P(x)=ax2+bx+c.
Alors, pour tout réel x on a P(x)=a[(x+b2a)2−Δ4a2].
On considère un polynôme du second degré P défini, pour tout réel x par P(x)=ax2+bx+c.
Alors, pour tout réel x on a P(x)=a[(x+b2a)2−Δ4a2].
Définition 5 :
On considère un polynôme du second degré P défini pour tout réel x par P(x)=ax2+bx+c.
L’expression a[(x+b2a)2−Δ4a2] est appelée forme canonique du polynôme P.
Exemples : On considère un polynôme du second degré P défini pour tout réel x par P(x)=ax2+bx+c.
L’expression a[(x+b2a)2−Δ4a2] est appelée forme canonique du polynôme P.
Pour déterminer la forme canonique d’un polynôme du second degré on peut soit utiliser la propriété précédente, soit reprendre la démonstration de la propriété en l’appliquant au cas particulier qui est fourni.
• On considère le polynôme P défini pour tout réel x par P(x)=2x2+6x−3 a=2, b=6 et c=−3 Le discriminant est :
Δ=b2−4ac=62−4×2×(−3)=36+24=60
Ainsi :
P(x)=2x2+6x−3=2[(x+62×2]2−604×22]=2[(x+32)2−154]
• On considère le polynôme R défini pour pour tout réel x par R(x)=5x2−7x+2 a=5, b=−7 et c=2.
R(x)=5x2−7x+2=5(x2−75+25)=5(x2−2×710+49100−49100+25)=5[(x−×710)2−49100+40100]=5[(x−×710)2−9100]
2. Solutions d’une équation du second degré
Théorème 1 :
On considère l’équation du second degré ax2+bx+c=0 et on note Δ=b2−4ac le discriminant du polynôme du second degré P défini par P(x)=ax2+bx+c.
• Si Δ<0 alors l’équation ne possède pas de solution réelle;
• Si Δ=0 alors l’équation possède une unique solution x0=−b2a;
• Si Δ>0 alors l’équation possède deux solutions réelles x1=−b−√Δ2a et x2=−b+√Δ2a.
On considère l’équation du second degré ax2+bx+c=0 et on note Δ=b2−4ac le discriminant du polynôme du second degré P défini par P(x)=ax2+bx+c.
• Si Δ<0 alors l’équation ne possède pas de solution réelle;
• Si Δ=0 alors l’équation possède une unique solution x0=−b2a;
• Si Δ>0 alors l’équation possède deux solutions réelles x1=−b−√Δ2a et x2=−b+√Δ2a.
• On veut résoudre l’équation 3x2−4x+5=0
Δ=(−4)2−4×3×5=16−60=−44<0
L’équation 3x2−4x+5=0 ne possède donc pas de solution réelle.
• On veut résoudre l’équation 5x2+40x+80=0
Δ=(40)2−4×5×80=1 600−1 600=0
L’équation 5x2+40x+80=0 possède donc une unique solution :
x0=−b2a=−4010=−4
• On veut résoudre l’équation 3x2+7x−2=0
Δ=72−4×3×(−2)=49+24=73>0
L’équation 3x2+7x−2=0 possède donc deux solutions :
x1=−7−√732×3=−7−√736
et x2=−7+√732×3=−7+√736.
3. Lien avec les polynômes du second degré
Propriété 2 :
On considère un polynôme du second degré P défini par P(x)=ax2+bx+c et son discriminant Δ=b2−4ac.
• Si Δ<0 alors le polynôme P ne possède pas de racine réelle;
• Si Δ=0 alors le polynôme P possède une unique racine x0=−b2a;
• Si Δ>0 alors le polynôme P possède deux racines réelles x1=−b−√Δ2a et x2=−b+√Δ2a.
Remarque : On considère un polynôme du second degré P défini par P(x)=ax2+bx+c et son discriminant Δ=b2−4ac.
• Si Δ<0 alors le polynôme P ne possède pas de racine réelle;
• Si Δ=0 alors le polynôme P possède une unique racine x0=−b2a;
• Si Δ>0 alors le polynôme P possède deux racines réelles x1=−b−√Δ2a et x2=−b+√Δ2a.
Il s’agit d’une réécriture du théorème précédent pour les polynômes.
En effet x est une racine du polynôme P si, et seulement si, ax2+bx+c=0.
Propriété 3 :
On considère un polynôme du second degré P défini par P(x)=ax2+bx+c tel que son discriminant Δ=b2−4ac soit strictement positif.
P possède alors deux racines x1 et x2.
On a alors x1+x2=−ba et x1×x2=ca.
On considère un polynôme du second degré P défini par P(x)=ax2+bx+c tel que son discriminant Δ=b2−4ac soit strictement positif.
P possède alors deux racines x1 et x2.
On a alors x1+x2=−ba et x1×x2=ca.
On considère le polynôme P définie par P(x)=7x2−7x−42.
On a :
P(3)=7×32−7×3−42=63−21−42=0
Ainsi 3 est une racine du polynôme P.
On appelle α la seconde racine.
D’après la propriété précédente (produit des racines) :
3α=−427⇔3α=−6⇔α=−2
Remarque :
Cette propriété permet de vérifier si les racines trouvées par le calcul sont les bonnes.
Propriété 4 : (factorisation)
On considère un polynôme du second degré P défini par P(x)=ax2+bx+c.
• Si Δ<0 alors le polynôme P n’est pas factorisable dans R;
• Si Δ=0 alors le polynôme P possède une unique racine réelle x0 et, pour tout réel x, on a P(x)=a(x−x0)2;
• Si Δ>0 alors le polynôme P possède deux racines réelles x1 et x2 et, pour tout réel x, on a P(x)=a(x−x1)(x−x2).
On considère un polynôme du second degré P défini par P(x)=ax2+bx+c.
• Si Δ<0 alors le polynôme P n’est pas factorisable dans R;
• Si Δ=0 alors le polynôme P possède une unique racine réelle x0 et, pour tout réel x, on a P(x)=a(x−x0)2;
• Si Δ>0 alors le polynôme P possède deux racines réelles x1 et x2 et, pour tout réel x, on a P(x)=a(x−x1)(x−x2).
• Si P(x)=5x2+40x+35.
Après calculs, on trouve Δ=900>0.
Le polynôme P possède alors deux racines x1=1 et x2=7.
De plus a=5.
Ainsi, la forme factorisée de P(x) est P(x)=a(x−1)(x−7).
• Si P(x)=−3x2−30x−75.
Après calculs, on trouve Δ=0.
Le polynôme P possède alors une unique racine x0=−5.
Ainsi, la forme factorisée de P(x) est P(x)=−5(x+5)2.
II Signes d’un polynôme du second degré et inéquations
Théorème 2 :
On considère un polynôme du second degré P défini pour tout réel x par P(x)=ax2+bx+c.
• Si Δ<0 alors P(x) a le même signe que a pour tout réel x;
• Si Δ=0 alors P(x) s’annule en −b2a et a le même signe que a pour tout réel x≠−b2a ;
• Si Δ>0 alors P(x) s’annule en deux réels distincts x1 et x2, tels que $x_1
On considère un polynôme du second degré P défini pour tout réel x par P(x)=ax2+bx+c.
• Si Δ<0 alors P(x) a le même signe que a pour tout réel x;
• Si Δ=0 alors P(x) s’annule en −b2a et a le même signe que a pour tout réel x≠−b2a ;
• Si Δ>0 alors P(x) s’annule en deux réels distincts x1 et x2, tels que $x_1
• On considère le polynôme P définie sur R par P(x)=−2x2+x−7.
On a :
Δ=12−4×(−2)×(−7)=1−56=−55<0
De plus, le coefficient principal du polynôme du second degré P est a=−2<0.
Par conséquent P(x)<0 pour tout réel x.
• On considère le polynôme P définie sur R par P(x)=3x2−24x+48.
On a :
Δ=(−24)2−4×3×48=576−576=0
De plus le coefficient principal du polynôme du second degré P est a=3>0 et −b2a=4 Par conséquent P(x)>0 pour tout réel x≠4 et P(4)=0.
Remarque :
On écrit souvent, d’une manière plus simple, P(x)>0 pour tout réel x.
• On considère le polynôme P définie sur R par P(x)=4x2+24x+20 On a :
Δ=242−4×4×20=576−320=256>0
Après calculs, les racines du polynômes sont −5 et −1.
De plus, le coefficient principal est a=4>0.
On obtient donc le tableau de signes suivant :
Ce théorème permet donc de résoudre des inéquations produits ou quotients dans lesquelles figurent des polynômes du second degré.
Exemples :
• Résoudre l’inéquation (x+5)(3x2+6x−24)>0 x+5=0⇔x=−5 et x+5>0⇔x>−5 On étudie maintenant le signe de 3x2+6x−24 Δ=62−4×3×(−24)=324>0
Le polynôme du second degré possède donc deux racines réelles :
x1=−6−√3246=−4 et x2=−6+√3246=2
Le coefficient principal est a=3>0.
On obtient donc le tableau de signes suivant :
Ainsi, l’ensemble solution de l’inéquation est ]−5;−4[∪]2;+∞[.
• Résoudre l’inéquation x−1−x2+3x−7<0 x−1=0⇔x=1 et x−1>0⇔x>1.
On étudie maintenant le signe de −x2+3x−7.
Δ=32−4×(−1)×(−7)=−19<0
Le coefficient principal est a=−1<0.
On obtient donc le tableau de signes suivant :
Ainsi, l’ensemble solution de l’inéquation est [1;+∞[.
Exercice 1
:
Les paraboles ci-dessous sont les représentations de polynômes de degré 2.
Dans chaque cas, donner la forme canonique et si possible la forme factorisée du trinôme associé.
Les paraboles ci-dessous sont les représentations de polynômes de degré 2.
Dans chaque cas, donner la forme canonique et si possible la forme factorisée du trinôme associé.
Exercice 2
:
Résoudre chacune de ces équations :
1) 2x2−2x−3=0
2) 2x2−5x=0
3) 3x+3x2=−1
4) 8x2−4x+2=32
5) 2 016x2+2 015=0
6) −2(x−1)2−3=0
7) (x+2)(3−2x)=0
Résoudre chacune de ces équations :
1) 2x2−2x−3=0
2) 2x2−5x=0
3) 3x+3x2=−1
4) 8x2−4x+2=32
5) 2 016x2+2 015=0
6) −2(x−1)2−3=0
7) (x+2)(3−2x)=0
Exercice 3
:
1) Résoudre, dans R, l’équation x2+x−6=0.
2) En déduire la résolution de :
a. X4+X2−6=0
b. 1x2+1x−6=0
1) Résoudre, dans R, l’équation x2+x−6=0.
2) En déduire la résolution de :
a. X4+X2−6=0
b. 1x2+1x−6=0
Exercice 4 : Avec les racines données
:
Dresser les tableaux de signes des polynômes suivants, connaissant leurs racines :
1) P(x)=2x2−8x+6 Racines : 1 et 3
2) Q(x)=−3x2−11x+4 Racines : 13 et −4
3) R(x)=x2−10x+28 Pas de racine
4) S(x)=−2x2−8x−11 Pas de racine
Dresser les tableaux de signes des polynômes suivants, connaissant leurs racines :
1) P(x)=2x2−8x+6 Racines : 1 et 3
2) Q(x)=−3x2−11x+4 Racines : 13 et −4
3) R(x)=x2−10x+28 Pas de racine
4) S(x)=−2x2−8x−11 Pas de racine
Exercice 5 : Avec les racines à déterminer:
Dresser les tableaux de signes des polynômes suivants :
1) A(x)=x2−9
2) B(x)=−2x2−8x
3) C(x)=(5−x)2
4) D(x)=16−25x2
5) E(x)=x2+1
6) F(x)=3x−2x2−1
7) G(x)=2x−x2−1
8) H(x)=−3x2
Dresser les tableaux de signes des polynômes suivants :
1) A(x)=x2−9
2) B(x)=−2x2−8x
3) C(x)=(5−x)2
4) D(x)=16−25x2
5) E(x)=x2+1
6) F(x)=3x−2x2−1
7) G(x)=2x−x2−1
8) H(x)=−3x2
Exercice 6 :
Résoudre dans R les inéquations suivantes :
1) 2x2−5x+3>0
2) 2x2−12x+19x−2<0
3) −6x2−9x−3−x2+8x−17>0
4) (2x−6)(4−4x)>0
5) −2x(x−2)(x2−8x+16)>0
6) 5(7x+5−6x2)−3(1−x)2>0
Résoudre dans R les inéquations suivantes :
1) 2x2−5x+3>0
2) 2x2−12x+19x−2<0
3) −6x2−9x−3−x2+8x−17>0
4) (2x−6)(4−4x)>0
5) −2x(x−2)(x2−8x+16)>0
6) 5(7x+5−6x2)−3(1−x)2>0
Exercice 7
:
Résoudre dans R les inéquations suivantes :
1) 1x>xx+2
2) xx+1<3(x+1)(x−2)
3) x(x−2)2>1+3x−2
2x+3<−x
Résoudre dans R les inéquations suivantes :
1) 1x>xx+2
2) xx+1<3(x+1)(x−2)
3) x(x−2)2>1+3x−2
2x+3<−x
Commentaires
Enregistrer un commentaire